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Abstract 
 Theories of visual narrative understanding have often focused on the changes in meaning 
across a sequence, like shifts in characters, spatial location, and causation, as cues for breaks in 
the structure of a discourse. In contrast, the theory of Visual Narrative Grammar posits that 
hierarchic “grammatical” structures operate at the discourse level using categorical roles for 
images, which may or may not co-occur with shifts in coherence. We therefore examined the 
relationship between narrative structure and coherence shifts in the segmentation of visual 
narrative sequences using a “segmentation task” where participants drew lines between images in 
order to divide them into sub-episodes. We used regressions to analyze the influence of the 
expected constituent structure boundary, narrative categories, and semantic coherence 
relationships on the segmentation of visual narrative sequences. Narrative categories were a 
stronger predictor of segmentation than linear coherence relationships between panels, though 
both influenced participants’ divisions. Altogether, these results support the theory that 
meaningful sequential images use a narrative grammar that extends above and beyond linear 
semantic shifts between discourse units. 
 
Keywords: Narrative; Visual Narrative Grammar; event-indexing model; discourse; comics; 
visual language 
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1. Introduction 
Research on language has long distinguished between the linear connections of units and 

their organization into a hierarchic constituent structure. At the discourse level, theories have 
argued that linear changes in meaning index changes in a broader segmental structure (Asher & 
Lascarides, 2003; Mann & Thompson, 1987), and such claims have been extended to the non-
verbal domain regarding the comprehension of visual narratives (Gernsbacher, 1990; Zacks, 
Speer, & Reynolds, 2009). Recent work looking specifically at visual narratives has argued that 
sequences of images (like in comics) are organized by a narrative “grammar” using constituent 
structures that go beyond linear coherence relationships between individual images (Cohn, 
2013b; Cohn, Jackendoff, Holcomb, & Kuperberg, 2014). In this theory, linear changes in 
meaning may correlate with constituent boundaries, but are not exclusively relied upon to signal 
such structures. Here, we examine this relationship between “visual narrative grammar” and 
linear coherence relationships in the segmentation of drawn sequential images. We hypothesized 
that coherence relations would predict the boundaries between constituents, but not as well as 
structural aspects of the narrative grammar.  

Predominant theories of visual narrative comprehension have focused on the linear 
relationships between panels—the encapsulated image units of a visual narrative. These linear 
relationships have often focused on the degree of change that occurs between images with regard 
to dimensions of characters, spatial locations, causation, and connections to a broader semantic 
associative network (Magliano & Zacks, 2011; McCloud, 1993; Saraceni, 2001). Similar 
semantic changes have also been prominent in theories of verbal discourse, exemplified by the 
event-indexing model (Zwaan, Langston, & Graesser, 1995; Zwaan & Radvansky, 1998), which  
argues that these coherence changes incur costs in comprehension, as the mental model for 
understanding a discourse must be updated to incorporate new information. Research with film 
narratives has confirmed that viewers intuit changes in characters, spatial location, and time 
between individual film shots (Magliano, Miller, & Zwaan, 2001; Magliano & Zacks, 2011; 
Zacks et al., 2009).  
 In contrast to this emphasis on meaning, Visual Narrative Grammar (VNG) argues that 
full comprehension extends above and beyond the semantic shifts between units. VNG draws an 
analogy between the structure of sequential images and the structure of sentences, in that panels 
take on functional “grammatical” roles that can be organized into hierarchic constituents (Cohn, 
2013b). Insofar as it proposes a hierarchic structure for narrative, it may appear similar to 
previous “grammars” for verbal stories (e.g., Mandler & Johnson, 1977; Rumelhart, 1975; Stein 
& Nezworski, 1978; Thorndyke, 1977) and film (e.g., Carroll, 1980), which grouped sentences 
into constituents based on characters’ goal-directed events. However, VNG differs from these 
models in that it uses simpler structures (Cohn, 2013b, 2015b) based on contemporary linguistic 
models of construction grammar (Culicover & Jackendoff, 2005; Jackendoff, 2002), and uses 
modifiers beyond a canonical narrative arc (Cohn, 2013a, 2013b, 2015b). In addition, VNG 
posits an unambiguous separation between structure and meaning (Cohn, Paczynski, Jackendoff, 
Holcomb, & Kuperberg, 2012), which evoke different neural responses when violated (Cohn et 
al., 2014; Cohn & Kutas, 2015; Cohn et al., 2012), consistent with the neural responses shown to 
violations of syntax and semantics in sentences (Friederici, 2002; Hagoort, 2003; Kuperberg, 
2007). 
 In VNG, a narrative schema outlines the canonical order of categorical roles. A narrative 
sequence may begin with an Establisher, which sets up a situation, often with a passive action. 
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Initials then set the interactions in motion, which climax in a Peak, concluding with a Release 
that dissolves this narrative tension. Although other categories and sequencing constructions may 
elaborate or modify a narrative (Cohn, 2015b), this Establisher-Initial-Peak-Release schema 
characterizes the canonical arc as a constructional pattern stored in memory (Cohn, 2014b; 
Mandler & Johnson, 1977). In addition, these narrative categories characterize both individual 
panels and groupings of panels containing these narrative sequences. This can better be 
understood by an example. 

Figure 1 illustrates how VNG would describe the narrative structure of a short visual 
sequence. This sequence shows Charlie Brown and Snoopy playing in the snow: Charlie Brown 
throws a snowball, which Snoopy chases, only to have it roll down the hill after him turning into 
a giant snow-boulder. The first panel is an Initial since it begins the events of the sequence, here 
depicting Charlie reaching back with a snowball. A Peak then shows a “mini-climax” with the 
completion of this action: Charlie throwing the snowball. The next panel, an Establisher, sets up 
a new interaction between Snoopy and the snowball. Another Initial then starts a new event, with 
Snoopy noticing the snowball rolling towards him. Another climax then occurs in the Peak, as 
Snoopy runs away from the snowball, which has grown to a frightening size. The final panel is a 
Release, a panel showing a resolution, aftermath, or coda of an action. In this panel, the Release 
shows Snoopy’s reaction to the snowball, as he hides behind a tree.  
 

 
Figure 1. Structure of a novel visual sequence with narrative categories and constituents. Note 
that the major constituent boundary also has a coherence change in characters and spatial 
location. Within our 6-panel experimental sequences, this was coded as a “2-4” strip pattern, 
because the first constituent has two panels and the second constituent contains four panels. 
Peanuts is © Peanuts Worldwide LLC.  

 
An important feature of VNG is that narrative categories do not just apply to panels, but 

also to whole constituents. In Figure 1, the first two panels do not just precede the final four 
panels linearly, but rather the first two panels together form a constituent within a larger 
structure, as do the final four panels. As a result, the first two panels form their own constituent 
(an Initial) that, as a whole, set in motion the entire second constituent (a Peak) at a higher level 
of structure. This constituent break does feature a surface semantic change between characters, 
but structurally it marks an “illegal” surface string: a Peak-Establisher panel bigram does not 
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follow the canonical narrative schema (E-I-P-R), and thus should mark the change between 
constituents. The double bar lines in Figure 1 denote the “heads” of each constituent—the panels 
within a constituent that motivate their broader clause (usually Peaks). In this way, narrative 
categories can recursively characterize both individual panels and whole groupings of panels. 

Although meaningful cues within panels may influence a panel’s role, the narrative 
categories in VNG are not solely determined by semantic content. Narrative categories are 
determined both by a panel’s bottom-up semantic content and its top-down context in a global 
sequence. These contextual constraints are determined by distributional tendencies throughout a 
narrative sequence (Cohn, 2014b), which may prototypically correspond to semantic aspects of 
event structure (such as preparatory actions corresponding with Initials). This is again analogous 
to the way that syntactic categories (nouns, verbs) are determined by distributional trends, but 
prototypically correspond to the semantic content (objects, events) of words (Jackendoff, 1990). 
Yet, they do not take grammatical roles until appearing in a sentence. For example, the sound 
string “hit” can play several grammatical roles that are only disambiguated in context: He hit the 
wall (verb); The song was a hit (noun); It was a hit song (adjective). In a similar way, the context 
of a sequence may influence the narrative roles played by various images, with some content 
being more flexible than others (Cohn, 2014b). 

Constituent structures are not a unique feature of VNG, and substantial evidence has 
suggested their presence in visual narrative comprehension both within the VNG paradigm. 
Participants are highly consistent in where they choose to divide a picture story into sub-episodes 
(Gernsbacher, 1985), and they are more accurate at remembering altered film shots or picture 
story images when they precede, rather than follow, a constituent boundary (Carroll & Bever, 
1976; Gernsbacher, 1985). Although these findings support the idea that comprehenders group 
information into segments, such effects could maintain a view of linear coherence relationships. 
For example, Gernsbacher’s (1990) Structure Building Framework posits that comprehenders 
may simply build a structure until a break between episodes occurs, at which time a new 
structure begins (Gernsbacher, 1990; Zacks et al., 2009). Such a view does not necessarily 
require categorical roles that build an internally hierarchic constituent structure for a sequence. 
This view has been backed by findings that participants’ chosen boundaries between discourse 
structures highly correlate with shifts in linear coherence (Speer & Zacks, 2005; Zacks & 
Magliano, 2011; Zacks, Speer, Swallow, & Maley, 2010). These observations have been 
extended to claim that, not only do coherence shifts align with the boundaries of discourse 
segments, but they provide the signals for such constituents to a comprehender (Gernsbacher, 
1990; Zacks & Magliano, 2011; Zacks et al., 2009). Because comprehenders incrementally 
update their mental models of a situation both within and between segments (Huff, Meitz, & 
Papenmeier, 2014; Kurby & Zacks, 2012), greater dimensional change at segmentation 
boundaries results in prediction error that signals a constituent break (Huff et al., 2014; Magliano 
& Zacks, 2011; Zacks, Speer, Swallow, Braver, & Reynolds, 2007). Thus, in this view, linear 
coherence changes play an integral role in defining the boundaries between constituents. 

It is important to note that VNG is not incompatible with views of linear changes in 
semantic coherence, nor their correlation with linear coherence relations. VNG hypothesizes that 
major coherence shifts operate within a semantic processing stream that is separate from the 
narrative grammar (Cohn, 2013b, 2014a; Cohn et al., 2012), and these shifts may indeed inform 
a reader about the boundaries between narrative constituents (as is the case in Figure 1). 
However, not all breaks in constituent structure align with coherence shifts. For example, in 
Figure 2b, the first constituent shows Schroeder oppressed by the sun while playing in the sand, 
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so he builds a sand mound to hide behind in the second constituent. Here, no shift in characters 
or location characterizes the constituent break. In addition, not all coherence shifts signal 
boundaries between constituent structures, contrary to other theories of discourse (Gernsbacher, 
1990; Zacks & Magliano, 2011; Zacks et al., 2009). For example, some character changes result 
in two panels that belong to the same constituent (Cohn, 2015b). Thus, in VNG semantic 
coherence relationships correlate with constituent structures, but do not exclusively motivate 
breaks between structures. This correlative relationship is made explicit because of the 
unambiguous separation of the narrative grammar and semantics in VNG (Cohn, 2013b; Cohn et 
al., 2012). 
 Recent research has provided evidence that comprehension of constituent structures does 
not exclusively rely on linear coherence relationships. We followed the logic of the classic “click 
experiments” from psycholinguistics, which found greater costs to recall and comprehension for 
disruptions placed within syntactic constituents of sentences than those placed between 
constituents (Fodor & Bever, 1965; Garrett & Bever, 1974). Similarly, we measured participants’ 
event-related brain potentials to visual narratives in which blank white disruption panels were 
inserted either between narrative constituents or within the first or second constituent (Cohn et 
al., 2014). A left-lateralized anterior negativity was greater to disruptions within constituents 
than between constituents, consistent with anterior negativities shown previously to violations of 
syntax in language and music (Hagoort, 2003; Neville, Nicol, Barss, Forster, & Garrett, 1991; 
Patel, 2003; Patel, Gibson, Ratner, Besson, & Holcomb, 1998).  

In this experiment, high proportions of shifts in characters and spatial location did indeed 
fall at narrative constituent boundaries (reported in Cohn, 2012). If such situational changes cued 
the break between constituents, as predicted by theories focusing on coherence shifts, then a 
comprehender would need to reach the panel after the constituent break, where that situational 
change would manifest. Yet, we observed larger amplitude left anterior negativities to 
disruptions within the first constituent compared to those between constituents—and these 
disruptions occurred prior to crossing the boundary where a coherence shift would be made. This 
suggests that participants predicted the upcoming constituent structure based on the content of 
panels preceding the disruptions, and did not rely on changes in coherence as a signal for them. 
Indeed, such semantic shifts had not yet been reached.  

Given these findings, it is important to clarify just what type of “hierarchy” or “structure” 
is emphasized in theories of visual narrative (and discourse) comprehension. The assumption in 
many models (stated or unstated) has been that “structure” is a uniform phenomenon. However, 
as emphasized by Jackendoff (2002), all components of the linguistic system may use 
combinatorial (i.e., hierarchic) structures. Thus, when discourse theories emphasize the “build up 
of structure” in terms of coherence shifts (e.g., Gernsbacher, 1990), it may reflect a hierarchy 
intrinsic to semantics and event structures (e.g., Asher & Lascarides, 2003; Bateman & 
Wildfeuer, 2014; Cohn, 2015b; Jackendoff, 2007; Kintsch, 1988, 1998; Radvansky & Zacks, 
2014) rather than to the constituent structure of a narrative grammar. This would be consistent 
with the finding that the amplitude of the N400 effect—a brainwave response thought to index 
the activation state of an incoming stimulus in semantic memory (Kutas & Federmeier, 2011)—
is attenuated across the ordinal position of coherent sequential images (Cohn et al., 2012). 
However, the N400 is not sensitive to the presence of the narrative grammar (Cohn et al., 2012), 
and our study on constituent structure observed neurocognitive responses to the violation of the 
narrative constituents in visual sequences (Cohn et al., 2014) typically seen to violations of 



Visual narrative constituents 

7 

syntax—i.e., left anterior negativities and P600s (e.g., Hagoort, 2003; Patel, 2003)—reinforcing 
that these are separate systems. 

With two hierarchic systems, we should expect to find mutual interfaces between them in 
predictable ways, with coherence shifts marking a surface structure of the semantics (i.e., events) 
that maps to particular constructs in the constituency of the narrative grammar (Cohn, 2015b). 
Such a mapping would be consistent with the interface between semantics and syntax at the 
sentence level, which optimally—but not always—maintains an isomorphic relationship 
(Culicover & Jackendoff, 2005; Jackendoff, 2002). This relationship thus predicts that coherence 
shifts would align with breaks in narrative constituent structure, though would not determine 
such boundaries alone. 

Even though our prior work has provided evidence that constituent structures do not 
solely rely on breaks in linear coherence, the explicit relationship between coherence relations 
and this narrative grammar remains unexplored. Prior studies of the relation between coherence 
shifts and “structure” in discourse have often relied on “segmentation tasks” first used by 
Newtson and colleagues (Newtson, 1973; Newtson & Engquist, 1976) to study event 
comprehension. This methodology has generally presented event sequences or visual narratives 
(drawn or filmed) to participants and asked them to segment such representations where one 
event ends and another begins. Subsequent segmentation tasks have been deployed using both 
“offline” and “online” methods (Mura, Petersen, Huff, & Ghose, 2013), which differ based on 
whether stimuli are presented as static or temporally successive representations. 

“Offline” segmentation tasks often present participants with whole visual or verbal 
narratives, and then are asked to locate the breaks in structure (Gernsbacher, 1985; Kurby & 
Zacks, 2012). For example, Gernsbacher’s (1985) original study of visual narrative asked 
participants to draw lines between static sequential images that marked the end of one episode 
and the beginning of another. In contrast, “online” segmentation tasks ask participants to actively 
segment visual narratives and events that unfurl temporally. This requires the segmentation task 
to occur concurrently to participants’ comprehension of the narrative. For example, online 
segmentation tasks have been used to explicitly examine segmental structure and coherence 
relations in filmed narratives (Huff et al., 2014; Magliano et al., 2001; Magliano & Zacks, 2011; 
Zacks et al., 2009; Zacks et al., 2010), and comparable tasks have also been successful in 
showing hierarchic relationships between coarse- and fine-grained segmentations of event 
structure (Zacks, Braver, et al., 2001; Zacks & Tversky, 2001; Zacks, Tversky, & Iyer, 2001).  

In our study, we used an offline segmentation task that expanded on the methodology in 
Gernsbacher (1985) to investigate the relative influences of narrative categories and coherence 
relationships on the segmentation of visual narrative constituent structure. Participants were 
given whole visual narrative sequences and asked to draw a line between panels that would 
divide a sequence into two parts that could make sense on their own. They then continued 
segmenting the sequence until all “panel bigrams” had been divided. Participants numerically 
labeled each of their segmentations in the order that they were made. Following the logic of 
classic psychological experiments on story structure (e.g., Gee & Grosjean, 1984; Gee & Kegl, 
1983; Mandler, 1987), we assumed that the initial segmentation of a narrative sequence reflected 
the maximal constituent structure (i.e., topmost node in a tree structure), with each subsequent 
division reflecting an additional substructure. In addition, we expected that panels with close 
relations (e.g., within a constituent and/or with little continuity changes) would be segmented 
later than those with looser relationships (e.g., at the boundary between constituents and/or with 
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coherence shifts), which should be preferred as initial segmentations. Thus, participants’ 
preferred order of segmentations should reveal intuitions for the internal structure of sequences. 

We then compared participants’ segmentations using regressions that analyzed the 
properties of each panel bigram in a sequence (five bigrams for six panels in each sequence), 
which included predictors of the expected boundary, narrative categories on both sides of a panel 
bigram, and coherence relations between panel bigrams. Similar methods have been used to 
examine the predictors influencing the segmentation of films (Zacks et al., 2009) and video 
games (Magliano, Radvansky, Forsythe, & Copeland, 2014) across various types of semantic 
relationships, yet no studies have previously included narrative category information as in VNG. 
If participants segment panels on the basis of linear changes in coherence, such as changes in 
characters or location, it would support prior work showing that semantic shifts signal breaks 
between structures (Magliano et al., 2001; Magliano & Zacks, 2011; Zacks et al., 2009). 
However, aspects of the narrative grammar should also provide cues for segmentation. For 
example, panel bigrams that use “illegal” strings of narrative categories (ex. Peak-Establisher)—
within an otherwise well-formed sequence—should be cues for constituent breaks on the basis of 
narrative structure, whether or not they feature a shift in coherence (Cohn et al., 2014). Thus, we 
hypothesized that, as expected by VNG, both narrative categories and coherence relations would 
strongly predict participants’ assessment of constituent boundaries, but that the narrative 
grammar would be more predictive of participants’ segmentations. 

 

2. Materials and Methods 

2.1. Stimuli 
 Coherent graphic sequences were constructed using black and white panels from the 
Complete Peanuts volumes 1 through 9 (1950-1968) by Charles Schulz. In order to eliminate any 
effects of written language, we only used panels without text, or deleted the text from panels. All 
created sequences were six panels in length. Standard daily Peanuts strips are four panels long, 
whereas Sunday strips range in length between five and twelve panels long. We therefore 
deliberately created 332 novel, narratively coherent sequences by combining existing panels 
from different daily strips, by combining novel panels created by editing existing panels, or by 
deleting panels from existing Sunday strips. Some sequences were designed with no particular 
constituent structures in mind (i.e., not aiming to have particular grammatical patterns), yet 
others were created to test specific grammatical patterns. Subsets of these sequences have 
appeared in several other studies of visual narrative comprehension where they were all rated as 
narratively and semantically comprehensible (Cohn & Paczynski, 2013; Cohn et al., 2012), 
including in studies examining constituent structure (Cohn et al., 2014). 

2.1.1. Coding of narrative structure 
Two researchers experienced in the constructs of VNG coded the narrative and semantic 

characteristics of our stimuli. Coding was done collaboratively in a direct dialogue, with 
disagreements discussed until they were resolved. We coded the predicted narrative constituent 
structures of all sequences using theoretical diagnostic tests (deletion, movement, sliding 
window) outlined by VNG (see Cohn, 2013b, 2014a), and now described in a “tutorial” via Cohn 
(2015a). For example, a “sliding window test” assessed the well-formedness of only a 3-panel 
“window” of a sequence, while omitting the other panels. Because constituents should form a 
whole grouping, windowed sequences should be more comprehensible when comprising whole 
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constituents or parts of constituents than if they cross constituent boundaries (i.e., contain 
portions of one constituent and portions of another). Thus, a 6-panel strip would first analyze 
panels 1-2-3, then 2-3-4, then 3-4-5, and 4-5-6. If both 1-2-3 and 2-3-4 were deemed well-
formed, but 3-4-5 and 4-5-6 were not, we might conclude that the break between constituents 
was located between panels 4 and 5, since this panel bigram existed within both less-felicitous 
strings.  

These theoretical diagnostics were combined with empirical findings from an earlier 
study where participants made a single segmentation (participants only drew a line between 
maximal boundaries) of two-constituent sequences (Cohn et al., 2014). We thus identified an 
“expected boundary” as our predicted break between constituents, given these diagnostic tests 
and prior empirical data. Panel bigrams with a maximal “expected boundary” between 
constituents were coded with a “1”, whereas subsequent divisions between nodes were coded 
with “2” or “3.” In contrast with sequences containing only a single constituent break (e.g., 
Figure 2a and 2b), sequences with multiple constituents used several constituent breaks (e.g., 
Figure 2c and 2d). For these stimuli, we therefore assigned the “expected boundary” by ordinal 
position in the sequence (e.g., the first boundary was coded as “1”, the second was “2”, etc.).  

Across all stimuli, many different patterns of narrative constituent structure were used. 
We focus here on constituents built of the core narrative schema, excluding modifiers and 
constructional patterns which carry additional predictions for the relations between linear 
coherence shifts and hierarchic structure (e.g., Cohn, 2015b). We chose several consistent 
patterns of constituent structure. Three major patterns all used two constituents, and varied 
depending on the location of the constituent boundary in the sequence. For example, “2-4” strips 
featured a constituent boundary between the second and third panels, thereby grouping the first 
two panels (“2”) into a constituent and the last four panels (“4”) into a constituent (as in Figure 
1). Two constituent patterns included 3-3 strips (55), 4-2 strips (54), and 2-4 strips (51). 
Sequences with three constituents often used a center-embedded clause, where one fully-formed 
“embedded clause” was placed within another “matrix” sequence. This structure can be tested by 
separating the sequences to see whether the embedded and matrix clauses could stand alone. 
These sequences included 2-3-1 strips (34), 2-2-2 strips (16), 3-1-2 strips (15), 2-1-3 strips (14), 
and 3-2-1 strips (10). Other two and three constituent patterns had less than 10 strips per pattern. 
Less frequent sequences included left-branching structures and other complex patterns with 
multiple embedded constituents, however, for simplicity, our analysis focused on the 
aforementioned sequences with two and three constituents where primary constituent boundaries 
were expected to be most apparent (250 strips total; 75% of all sequences). 

Figures 1 and 2 depict example sequence patterns. Figure 1 depicts a 2-4 strip, as 
discussed above. In Figure 2a, a 3-3 strip, Linus tears up paper in a first constituent (Initial), 
which is then played with, and lands on the head of, Snoopy (Peak) in the second constituent. 
Figure 2b, a 4-2 strip, shows Schroeder playing in sand until it gets too hot (Initial constituent), 
so he builds a sand pile so he can hide in the shade (Peak constituent). Figure 2c uses an 
embedded clause in a 2-3-1 pattern where Linus runs to catch a baseball hit in the air (matrix 
clause), but only before making a pit-stop to build a sandcastle (embedded clause). Finally, 
Figure 2d uses a 3-2-1 pattern where Charlie throws a newspaper (Initial constituent), which is 
retrieved by Snoopy and strewn all over the road by his sneeze (Peak constituent), only to have 
Charlie continue on his paper route oblivious to the mess caused by Snoopy (Release). 
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Figure 2. Various constituent structure patterns in visual narratives, with lines highlighting the 
breaks between constituents. Sequences (a) and (b) contain two constituents, whereas (c) and (d) 
both have three constituents, with a center embedded clause. Note that only some of the 
constituent boundaries align with changes in spatial location (a, c, d) and/or characters (a, c, d), 
but (b) has no major coherence changes between constituents. Peanuts is © Peanuts Worldwide 
LLC. 
 

In addition to constituent structures of the sequences, we coded panels’ narrative 
categories based on both their semantic content and their context in the sequence, again using 
theoretical diagnostic tests (Cohn, 2013b, 2014b). For example, deletion of some narrative 
categories (Peaks, Initials) renders a sequence less understandable, but omission of others 
(Establishers, Prolongations, Releases) is more acceptable (Cohn, 2014b). In addition, Peaks, but 
not any other category, can felicitously be substituted for an “action star” panel, which depicts a 
star-shaped “flash” commonly associated with impacts (Cohn, 2013a; Cohn & Wittenberg, 2015). 
Meanwhile, Releases, but not any other category, can have the phrase “Jeez, what a jerk!” added 



Visual narrative constituents 

11 

as a speech balloon and retain the coherence of the sequence (Cohn, 2013a, 2013b; Sinclair, 
2011). Additional diagnostics can be found in Cohn (2015a). 

We recorded the narrative categories for each side of a panel bigram (i.e., first panel in a 
bigram or second panel in a bigram). Table 1 outlines the proportion of panel bigrams where 
each category appeared in first or second position for our 249 analyzed sequences. Note that the 
highest frequencies conform to the bigrams in the canonical sequence order of E-I-P-R, i.e., the 
bigrams of E1/I2 (i.e., E1 = Establisher as the first panel of a bigram followed by I2 = Initial as 
the second panel of the bigram), I1/P2, and P1/R2 (italicized and greyed). This canonical 
structure is maintained also in that Establishers and Initials appear more often as the first panel of 
a bigram than the second panel, whereas the reverse is true of Peaks and Releases. Other bigrams 
may reflect the divisions between constituents, such as P1/E2 reflecting a Peak ending one 
constituent and an Establisher starting another constituent (as in Figure 1). Altogether these 
categories constituted roughly 94% of all panel bigrams, with the remaining 6% comprised of 
various narrative modifiers, here excluded for simplicity. 

 
Table 1. Proportion of all panel bigrams using particular narrative categories in first or second 
positions (i.e., bigrams with I1 and P2 means the first panel was an Initial and the second panel 
was a Peak: I-P). Total bigrams in our analysis=1246. 
	 	 	 Second panel of a bigram 	
	 	 Establisher (E2) Initial (I2) Peak (P2) Release (R2) Total 

	 Establisher (E1) 0.019 0.157 0.013 0.0 0.19 

First 
panel 
of a 
bigram 

Initial (I1) 0.003 0.026 0.313 0.008 0.35 
Peak (P1) 0.052 0.060 0.039 0.180 0.33 

Release (R1) 0.012 0.035 0.016 0.012 
0.075 

	 Total 0.087 0.277 0.38 0.20 
  

 
It should also be noted that our segmentation task dividing panel bigrams yields an 

inherently binary branching structure. VNG does not exclusively predict a binary branching 
structure, but rather uses a flat structure more consistent with syntactic models from construction 
grammar (Culicover & Jackendoff, 2005; Goldberg, 1995; Jackendoff, 2002). Nevertheless, we 
believed that a binary division could inform us both about the broader intuitions of constituent 
structures in a whole sequence and about relationships between categories within a constituent. 

2.1.2. Coding of coherence relationships 
Coherence changes were coded along three salient dimensions discussed in the event-

indexing model (Zwaan & Radvansky, 1998): characters, causality, and spatial location. We 
considered coherence shifts to be non-mutually exclusive (i.e., panel relationships could have 
multiple coherence changes) and non-exhaustive (i.e., coherence changes could be both full and 
partial). This granularity was important because, in VNG, degrees of changes may predict 
different types of processing. For example, partial changes in characters (characters are added or 
omitted between panels) would be expected to incur costs of updating a mental model (consistent 
with various discourse theories), and possibly constituent breaks. However, they would not be 
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expected to signal modifying “grammatical constructions” that may arise from full changes 
between characters (e.g., Cohn, 2015b).  

Changes in characters were coded as a “1” for a complete change in characters between 
panels, with “.5” for a partial change (i.e., characters held constant but others added or omitted), 
and no change in characters was coded as “0.” Changes in spatial location were coded as “1” for 
complete changes in location, “.5” for partial changes (such as changes within a common space, 
such as moving from one room to another in the same building), and “0” for no changes in 
location. Shifts in causation were coded as “1” where the events depicted in one panel were 
directly caused by the events in a prior panel (i.e., depicted the direct effect of the prior panel’s 
events; ex. Charlie Brown falling because Lucy pulls a football away from being kicked), “0” for 
no causal relations, and “.5” for causal relations that were not related to full actions (an action in 
one panel did not cause a full action in another, but led to a change in a character’s emotional 
state; ex. Lucy scowling after Snoopy rolls by on roller-skates). We considered this difference 
between causal changes as reflecting modulated degrees of intensity rather than as “partial” or 
“full” in the sense of shifts between characters or locations. 

The proportion of coherence relations across all sequences by ordinal panel position is 
provided in Table 2, including both full and partial coherence shifts. Across all panel 
relationships, more bigrams showed changes in characters (34%) than causal shifts (25%) or 
changes in spatial location (23%). These shifts were most pronounced at bigram 2-3, which is 
consistent with the idea that coherence shifts signal constituent boundaries: Nearly half (115 of 
249; 46%) of all analyzed sequences had a constituent boundary at bigram 2-3 (2-4 strips, 2-3-1 
strips, 2-2-2 strips). The high proportion of causal changes at bigram 5-6 is also consistent with 
VNG: A final sequence panel is often a Release, which will prototypically depict the aftermath 
of the events in the prior panels (i.e., a causal change). In addition, coherence changes did align 
with the topmost expected boundary between constituents. Expected boundaries typically used 
both character changes (50%), and spatial location changes (35%), but far fewer causal shifts 
(16%).  
 
Table 2. Proportion of all panel bigrams across ordinal sequence featuring shifts in characters, 
spatial locations, and causal relations. Total bigrams = 1246. 

Coherence 
Changes 

Bigram 
1-2 

Bigram 
2-3 

Bigram 
3-4 

Bigram 
4-5 

Bigram 
5-6 Total 

Characters 0.053 0.085 0.066 0.063 0.075 0.342 
Spatial Location 0.028 0.058 0.046 0.039 0.055 0.225 

Causation 0.034 0.050 0.040 0.051 0.079 0.254 
 
 
 Finally, we compared all the main predictors of our analysis using correlations. Table 3 
depicts the r-values between our predictors. Note that these values do not necessarily reflect 
frequencies of panels within bigrams, but rather correlations between panels found in bigrams 
throughout sequences. For example, the bigram E1/I1 never occurs because no bigram can have 
two panels in its first position. However, a panel bigram of E1/I2 may precede a bigram starting 
with that same Initial (I1), resulting in a correlated relationship between E1 and I1. Yet, not all 
I1’s will first be an I2, as in sequence-starting Initials. It should be immediately apparent that 
nearly all predictors correlated significantly with each other. Of particular interest, the “expected 
boundary”—our predicted break between major constituents—correlated significantly with all 
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predictors except causal changes, which trended towards significance (p=.096). Peaks and 
Releases as the first panel of a bigram, Establishers and Initials as the second panel of a bigram, 
and character and spatial location changes all positively correlated with the expected boundary. 
Establishers and Initials as the first panel of a bigram, Peaks and Releases as the second panel of 
a bigram, and causal changes were all negatively correlated with the expected boundary. Also 
worth noting is that the bigrams reflecting a canonical narrative schema (E-I-P-R, highlighted in 
grey) are the most highly correlated of all bigrams. 
 
Table 3. Correlation coefficients between all predictor variables used in the regression analysis. 
Again, bigram pairs reflecting a canonical narrative schema are highlighted in grey. “Expected 
boundary” was the predicted major boundary between constituents. Total bigrams = 1246, Bold 
= p < .05, Italics = p < .1  

 

Expected 
Boundary E1 I1 P1 R1 E2 I2 P2 R2 

Character 
change 

Spatial 
change 

E1 -0.18 
          I1 -0.33 -0.37 

         P1 0.30 -0.34 -0.54 
        R1 0.34 -0.14 -0.22 -0.20 

       E2 0.47 0.02 -0.21 0.17 0.07 
      I2 0.17 0.59 -0.36 -0.15 0.11 -0.19 

     P2 -0.28 -0.33 0.70 -0.41 -0.11 -0.25 -0.51 
    R2 -0.20 -0.26 -0.36 0.55 -0.04 -0.16 -0.33 -0.34 

   Character 
changes 0.32 -0.08 -0.19 0.19 0.15 0.25 0.00 -0.19 0.06 

  Spatial 
changes 0.27 -0.11 -0.14 0.17 0.10 0.21 0.00 -0.15 0.04 0.39 

 Causal 
changes -0.05 -0.20 -0.01 0.22 -0.08 -0.09 -0.17 0.04 0.24 -0.01 -0.05 

 
 

2.2. Participants 
We recruited 54 experienced comic readers (27 male, 27 female, mean age 22.9) from the 

Tufts University community, who were paid for their participation. All participants gave 
informed written consent according to Tufts University’s Human Subjects Review Board 
guidelines. We assessed participants’ experience reading comics by using the “Visual Language 
Fluency Index” (VLFI), which generates a “fluency score” based on participants’ answers from a 
pretest questionnaire that asked them to rate their habits for reading and drawing various types of 
visual narratives (for details, see Cohn et al., 2012). VLFI scores correlate with both behavioral 
and neurophysiological effects in online comprehension of visual narratives (e.g., Cohn & Kutas, 
2015; Cohn et al., 2012). In this metric, “average” fluency falls at 12, with low fluency below 8 
and high fluency at or above 22. Participants had a wide range of VLFI scores (low=4.38, 
high=35.38), but had an “average” mean fluency of 14.35  (SD=6.24). Data from one participant 
was excluded from analyses due to their not properly carrying out the task. 

2.3. Procedure 
 Participants were given a stack of paper, where each sheet depicted an experimental 
sequence. Because of time restraints, participants only viewed half of the 332 overall stimuli 
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sequences, roughly 165 sequences each. The order and choice of sequences shown to each 
participant were randomized.  

We first asked participants to draw a line between panels where they thought the strip 
could best be divided into two sections that still made sense on their own. Next, we asked them 
to continue dividing the remaining segments into smaller pieces that “made sense” until all panel 
breaks had been segmented. To assess the order that participants drew each line, we asked them 
to label each division with a number, such that the first division was marked as “1” and 
subsequent divisions were labeled up to “5.” Participants were told that there were no right or 
wrong answers, and to go with their first instinct. After finishing the segmentation task, 
participants answered a short questionnaire where they rated how difficult they found the task 
overall, and at each individual division (divisions 1 through 5) on a 1 to 5 scale (1=easy, 
5=difficult). We also asked them to describe any conscious strategies they used in choosing their 
divisions. On average, participants took roughly 45 minutes to an hour to complete the task, 
depending on the number of stimuli that they viewed. 

2.4. Data analysis 
Because time restrictions allowed participants to view only half of the 332 overall stimuli 

sequences, each item was viewed by between 25 and 29 participants (mean: 27.28). For each 
sequence, we recorded the order of divisions made by each participant. Our analysis focused on 
participants’ first and second segmentations of sequences that had only two or three constituents 
and had more than 10 strips per sequence pattern (see above).  

Our primary analysis followed those in other studies of segmentation (Magliano et al., 
2014; Zacks et al., 2009), which used separate logistical regressions on each participant’s data, as 
developed by Lorch and Myers (1990). This methodology allowed us to address the question of 
“What properties do participants use as cues to segment visual narrative sequences?”, as opposed 
to a question of “What properties do constituent breaks have?” that would be addressed by a 
single regression collapsing across participants. The dependent variable was the participant’s 
segmentation for a particular panel bigram (a binary 0/1 assessment, “0” if they did not segment 
a bigram, “1” if they did bigram a segment), meaning that each strip contributed five datapoints 
for each bigram (panel break) in a 6-panel sequence. Predictor variables included the expected 
boundary, narrative categories (categories appearing either first or second in a bigram), and 
coherence relations (shifts in characters, space, or causation), with each predictor coded as “1” if 
that variable was used by a given panel bigram, or “0” if it was not (or “.5” where appropriate for 
coherence relations). This analysis yielded b-weights for each predictor for each participant. We 
extracted these b-weights from the regression analyses and compared them against 0 using a t-
test to determine whether each predictor was significant. Following this, we used a one-way, 
repeated measures ANOVA to assess the relative influence of each predictor against each other, 
along with follow up t-tests between the b-weights of each predictor. 

In addition, responses to post-experiment questionnaires were analyzed with a subject’s 
analysis averaging participants’ ratings for each segmentation’s difficulty (1=easy, 5=difficult). 
Participants’ descriptions for conscious strategies of segmentation were coded for terms 
describing changes in linear coherence (“I looked for scene changes and new characters”), event 
knowledge (“one event ended and another began”, “cause and effect”) or narrative structure 
(“punch-line panels”). Data from three participants were excluded from this analysis due to not 
completing the questionnaire. The included participants’ data were analyzed using repeated-
measures ANOVAs, followed by t-tests to compare pairwise relations between strategies.  
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Finally, to assess any possible influence of participants’ comic reading frequency on 
these results, both b-weights of predictors from the regression analyses and participants’ 
difficulty ratings were correlated with VLFI scores using a Pearson’s correlation set to .05.  
 

3. Results 

3.1. Segmentation 
We first report whether participants’ segmentations corresponded to the location of 

boundaries predicted by VNG, and the consistency of those segmentations between participants. 
Overall, a modest proportion of participants chose our expected boundary as their first 
segmentation (44%), though this well exceeded the threshold of chance (20% = 1 out of 5 panel 
bigram possibilities), t(52)=15.3, p<.001. This was comparable to the proportion of participants 
(47%) who shared the most common first segmentation for a sequence (i.e., the mode for first 
segmentation), regardless of our expected boundary, which also exceeded the 20% threshold of 
chance, t(52)=19.6, p<.001.  

We next report our primary analysis, which used regressions on each participant’s choice 
of first segmentation to examine the predictors of the expected boundary, narrative category 
bigrams, and coherence shifts. B-weights were produced by each regression and then averaged 
across participants. Mean b-weights are depicted in Figure 3. A t-test showed that, at the 
expected first segmentation boundary, Establishers and Initials as the second panels of a bigram, 
character changes, and spatial changes were all significant as positive predictors of a 
segmentation (all ts > 6.4, all ps < .001). Establishers, Initials, and Releases as the first panels of 
a bigram, Releases as the second panel of a bigram, and causal changes were all significant 
negative predictors of segmentation (all ts < -2.8, all ps < .01).  

A repeated-measures ANOVA confirmed that these b-weights for predictors were all 
significantly different from each other, F(11,572)=53.9, p<.001. Establishers as the second panel 
of a bigram were significantly more influential than all other positive predictors (all ts > 2.3, all 
ps < .05), followed by the expected boundary (all ts > 2.5, all ps < .05). Initials as the second 
panel of a bigram were more influential than Peaks of either bigram position (all ts > 3.5, all ps < 
.005), but did not differ from character or spatial changes (all ps > .128). Character and spatial 
changes were also larger than Peaks of either bigram position (all ts > 2.5, all ps < .05), but 
Peaks did not differ from each other (p=.828). Of the negative predictors, Establishers and 
Initials as the first panel of a bigram and Releases as the second panel of a bigram were 
significantly more negative than Releases as the first panel of a bigram and causal changes (all ts 
> 2.7, p < .01), but did not differ from each other (p>.097). Releases as the first panel of a 
bigram were also more influential than causal changes, t(52)=2.0, p<.05.  
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Figure 3. Mean b-weights from regressions averaged across participants depicted for predictors 
related to participants’ mean agreement for first and second segmentations of visual narrative 
sequences. Error bars show standard deviation. N=53; * = p < .05. 
 

Figure 3 also depicts the b-weights for each predictor across participants’ second 
segmentation. Here, the expected second segmentation boundary, Releases as the second panel 
of a bigram, and character changes all were significant positive predictors (all ts > 2.5, all ps < 
.05). Only Establishers as the second panel of a bigram were a significant negative predictor, 
t(52)=-2.5, p<.05. When compared against each other, all predictors significantly differed, 
F(11,572)=4.9, p<.001. The expected boundary and Releases as the second panel of a bigram 
were more influential than all other predictors (all ts > 1.9, all ps <.06), but did not differ from 
each other (p=.877). No other negative predictors differed from each other (all ps > .47). 
 Because several of the factors in our regression were highly correlated (for example, 
because of the ordering of the canonical narrative schema, certain categories will naturally 
precede or follow each other), we sought to investigate any issues with multicollinearity in our 
data. Following the method of our regression analysis, we calculated the variance inflation 
factors (VIF) for each participant’s regression, and again averaged them across participants. 
Though VIFs were expectedly high for categorical information (Table 4), they did not exceed the 
recommended level of 10. 
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Table 4. Variance inflation factors for all independent variables in the regression analysis.  

 
Segmentation 1 Segmentation 2 

Expected Boundary 2.65 1.10 
E1 7.59 6.83 
I1 9.41 9.06 
P1 8.07 8.08 
R1 3.37 3.35 
E2 3.25 3.06 
I2 6.16 6.02 
P2 5.53 5.55 
R2 5.19 4.74 
Character change 1.30 1.30 
Spatial change 1.26 1.26 
Causal change 1.12 1.12 

 
 

Finally, we considered the impact of “visual language fluency” on participants’ 
segmentations. For the first segmentation, VLFI scores approached significance for positively 
correlating with Peaks in the first panel of a bigram, r(51)=.246, p=.076, and significantly 
correlated with character changes, r(51)=.308, p<.05. Both correlations suggested that these 
predictors were more influential for participants with higher fluency scores. For the second 
segmentation, negative correlations appeared between VLFI scores and Establishers, Initials and 
Peaks as the first panel of a bigram (all rs < -.270, all ps < .051), suggesting that these were all 
less influential for higher fluency participants. 

3.2. Participant assessments 
 Next, we report participants’ assessments for the difficulty of the segmentation task. 
Using a 1 (=easy) to 5 (=difficult) scale, participants reported that their choices for 
segmentations were not overly difficult, with an overall mean of 3.12 (1.02). Participants found 
the first segmentation of bigrams to be the most easy, 1.63 (.69), with each subsequent 
segmentation becoming progressively more difficult until the final division: S2: 2.53 (.95), S3: 
3.51 (.78), S4: 3.79 (1.02), S5: 3.36 (1.5). These ratings differed across divisions, F(4,196) = 
39.14, p < .001, with all segmentations significantly different from each other (all ts > 3.06, all 
ps < .005) except for a trending significance between segmentations 3 and 4, t(49) = 1.86, p = 
.07, and no significance between segmentation 3 and 5, t(49) = .493, p = .624.  

Further examination revealed that first-segmentation difficulty ratings negatively 
correlated with participants’ VLFI scores, r(48) = -.329, p < .05, suggesting that participants with 
higher fluency considered their first segmentation to be easier than did those with less fluency. 
Although correlations were not significant after the first segmentation, we observed an 
interesting trend across correlation coefficients: The r-values for the correlation between 
segmentation and VLFI score increased with each segmentation, following the pattern of the 
difficulty ratings (1st line: -.349, 2nd line: -.147, 3rd line: .086, 4th line: .25, 5th line: .173). We 
interpreted this trend as suggesting that fluency became less advantageous for sequence-
segmentation the further participants progressed in the task (where they had fewer choices for 
where to draw segmentation lines). 
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 Finally, we also examined how participants explained their choices in the segmentation 
task. More participants consciously explained their decisions for segmentations by describing 
aspects of the start and end of events (51%) and coherence relations (49%) than purely narrative 
aspects of the structure (20%). Narrative explanations were used significantly less than strategies 
relying on coherence relations and events (all ts > 3.1, all ps < .005), which did not differ from 
each other, t(49) = .198, p = .844. 

4. Discussion 
 This study investigated the factors that influenced participants’ intuitions about the 
segmental structure of visual narratives. First, despite the modest agreement for first 
segmentations as a whole, the regression analysis suggested that expected boundaries were 
strong predictors of both first and second segmentations. Next, both narrative category 
information and coherence relations predicted segmentation, though categorical information was 
a consistently stronger predictor than linear coherence changes for both segmentations. Despite 
the greater influence of narrative categories, participants’ conscious explanations for 
segmentations focused more on the linear semantic changes, consistent with previous findings of 
filmed visual narratives (Magliano et al., 2001; Magliano & Zacks, 2011; Zacks et al., 2009). 
These results suggest that segmentation of visual narrative sequences relies more on narrative 
structure, despite it being less consciously accessible than semantic features. However, overall, 
these results support the claim that two processing streams of narrative and semantics contribute 
to the whole understanding of constituent structures in sequential images. Below, we discuss 
these findings in more detail. 
 Overall, we found a modest agreement (44%) across participants for segmenting our 
expected boundary. This proportion exceeded the threshold of chance (20% = 1 out of 5 panel 
bigram possibilities), suggesting that participants shared intuitions for the division of sequences. 
However, this proportion was noticeably lower than found in our prior work (71%) for 135 of 
these 250 analyzed stimuli (Cohn et al., 2014). However, this prior study asked only for a single 
segmentation of two-constituent sequences, whereas this project asked for repeated 
segmentations of variable sequence patterns. It is possible that participants in the present study 
were more flexible about their first segmentation, knowing that they could also choose other 
bigrams on subsequent segmentations. Finally, we here coded only a single expected boundary 
(the first in the ordinal sequence). Yet, for the 90 three-constituent sequences there were two 
feasible initial boundaries (i.e., the two boundaries dividing the three segments), meaning that 
selection of the alternate boundary in these cases may have lowered the overall agreement. 

Our regression analysis more clearly illustrated the factors influencing segmentation. 
Narrative category information most predicted the segmentation of the visual sequences. 
Establishers and Initials after the segmentation (second panel in a divided bigram) were more 
influential than any other predictor besides the expected boundary (which had mean b-weights 
falling between these predictors). Because Establishers and Initials typically begin a narrative 
schema, their presence as the second panel in a divided bigram is indicative of their starting a 
new constituent. The opposite finding occurred in the reversed stepwise pattern for Establishers 
and Initials as negative predictors when occurring as the first panel in a bigram. Because 
participants would not choose these panels to end a constituent (as the first panel of a divided 
bigram), they most negatively predict segmentation choices. In addition to Establishers and 
Initials, participants dispreferred Releases both before and after the boundary (second panel of a 
bigram). Altogether, the results for all categories reflect the canonical order of narrative 
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sequences (E-I-P-R), maintaining categories towards the front of the arc as the start of new 
constituents (E, I), whereas the categories towards the end of the arc finish constituents (P, R). 
Thus, these segmentation results provide further evidence for the presence of narrative categories 
stored in a canonical order. 
 In the second segmentation, none of the mean b-weights were as strong as in the first 
segmentation, but the strongest predictor was Releases as the second panel of a bigram. This 
division of a Release may align with the fact that our coding revealed that bigrams in position 
5/6 had fairly substantial numbers of coherence shifts. Since Releases often end narrative 
schemas, this coherence shift may thus have been a cue for this second segmentation. However, 
although Releases as the second panel of a bigram correlated with causal changes (r = .24, p < 
.001) and somewhat with character changes (r = .06, p = .04), they were not significantly 
correlated with spatial location changes (r = .04, p = .2). Furthermore, the b-weights for the 
Release as the second panel of a bigram were still larger than for all coherence relations for the 
second segmentation. This suggests that coherence relations alone were not the primary 
motivator of this segmentation, though they may have factored into that decision.  

Other possible reasons for this segmentation of second-panel Releases may rely on 
narrative structure and/or the prototypical semantic content of Release panels. First, some 
sequence patterns might separate a Release into a second constituent (as in many 2-3-1 
sequences), meaning that this panel was part of an actual boundary, not a segmentation made 
within a constituent. Second, if they were within a constituent, it may reflect a distancing of 
Releases from the remaining categories within a narrative schema. This is consistent with the 
idea of Releases being one of the “peripheral” categories of a narrative schema (along with 
Establishers and Prolongations) compared to the “core” categories of Initials and Peaks (Cohn, 
2014b). Such separation may also align with observations that the endpoints of paths are more 
salient than starting points, whether in language, perception, and attention (Lakusta & Landau, 
2005; Regier, 1996, 1997). Because endpoints of actions—which are prototypical of Releases—
should be emphasized in a situation, participants choose to segment a narrative schema that 
individuates these panels.  
 Semantic coherence relations between panels also influenced participants’ segmentations. 
Participants significantly relied on changes in characters and spatial location—but not causal 
shifts—to influence their first segmentations. Second segmentations also used changes in 
characters, but less so than the first segmentation. These first-constituent segmentations are 
consistent with the idea that changes in referential coherence (characters, location) may align 
with breaks in narrative constituents (Gernsbacher, 1990; Zacks & Magliano, 2011; Zacks et al., 
2009), whereas causal actions likely correspond to the internal structure of constituents, where 
characters progress through actions. Thus, participants likely do use major coherence shifts as 
breaks between constituent structures, while building up “structure” (i.e., semantic coherence, 
motivated by causal relations) within constituents. Because of this, causal changes did not arise 
as a significant predictor at constituent breaks, but may be more likely within constituents 
(though this was not explored by our analysis). 

Nevertheless, for both segmentations, these coherence relationships were less predictive 
than narrative category information. Such results appeared even though most narrative categories 
in bigrams were proportionally smaller than coherence shifts: Establishers as the second panel of 
a bigram comprised only 9% of all total bigrams, which was very small compared to the panel 
bigrams with changes in spatial location (22%) or characters (34%). Yet, Establishers as the 
second panel of a bigram had average b-weights almost four times larger than spatial location 
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and character changes. These results confirm that coherence shifts do co-occur with constituent 
boundaries, and such shifts may factor into participants’ segmentations, but that these changes in 
semantic features are not the primary motivator of structure in visual narratives. Such findings 
are consistent with previous work where neural responses to disruptions of constituent structure 
occurred prior to comprehenders reaching shifts in coherence (Cohn et al., 2014), meaning that 
these brain modulations were due to predictive processing motivated by the content of preceding 
panels, not crossing a break in semantics. Thus, although semantics do indeed influence and co-
occur with breaks in narrative structure, coherence shifts alone do not seem to determine 
recognition of structural boundaries. 

Participants’ explanations of their segmentation choices also emphasized semantic 
aspects of coherence relationships and events. This is particularly important because prior 
research emphasizing linear coherence relationships have often relied upon participants’ 
conscious recognition of these factors (Magliano, Dijkstra, & Zwaan, 1996; Magliano et al., 
2001). The results of the present study do support the theory that coherence relations factor into 
participants’ choices for segmenting visual narrative sequences, but these semantic factors were 
ultimately less predictive than aspects of narrative structure. However, these narrative structures 
appeared to be less consciously accessible to participants. Similar findings have been found in 
previous work where participants reported observations about manipulations to the semantics of 
visual sequences, but made almost no mention of noticing manipulations to narrative structure 
(Cohn et al., 2012). That structure seems more “invisible” than semantics may also relate to the 
longstanding observations that recall for semantic information persists, whereas structure of a 
narrative rapidly disappears from memory (e.g., Gernsbacher, 1985; van Dijk & Kintsch, 1983).  

Accordingly, researchers must thus be sensitive to the abilities of tasks and measurements 
to capture observations of desired structures. Certain methods may be more effective at assessing 
the semantics than the narrative structure, and vice versa. For example, given that semantic 
information is retained in memory, whereas “structural” information is not (e.g., Gernsbacher, 
1985; van Dijk & Kintsch, 1983), memory paradigms may therefore not be appropriate for 
investigating the properties of a narrative grammar. This was the case for most studies of “story 
grammars” and “scripts” (e.g. Black & Bower, 1979; Mandler & Johnson, 1977; Stein & Glenn, 
1979; Thorndyke, 1977), which were criticized for positing “grammatical” constructs that were 
actually closer to semantics (Black & Wilensky, 1979; de Beaugrande, 1982). Nevertheless, such 
methods may be useful for detailing aspects of the semantic structure (though not mechanisms of 
online processing). Similar limitations may also hold for studies relying on conscious 
assessments of stimuli, including segmentation tasks (as opposed to unconscious processing of 
manipulated structures). Although they are likely useful for investigating the semantics and event 
structure of visual narratives, tasks emphasizing conscious awareness of unmanipulated 
sequences may be unable to address the complexity found in a narrative structure. 

On these points, it is worth highlighting some differences in methodology between this 
study and prior works examining visual narrative segmentation (though their results are not 
necessarily in opposition). First, unlike the many “online” segmentation tasks that have used 
filmed narratives or events (Magliano et al., 2001; Magliano & Zacks, 2011; Zacks et al., 2009; 
Zacks et al., 2010), this study used an “offline” task of drawn visual narratives laid out spatially 
on a page (as in Gernsbacher, 1985). Participants could thus see the entire sequence all at once, 
rather than engage it temporally as it unfurled. This meant that participants did not have to 
negotiate basic processing of the sequence and the segmentation task simultaneously, and instead 
could assess the whole sequence before making their segmental judgments. In addition, they 



Visual narrative constituents 

21 

could assign preferential importance to some segmentations over others (i.e., “first 
segmentation” vs. “second segmentation,” etc.), which would be much harder with temporally 
progressing stimuli. It may be possible that offline segmentation increases the salience of the 
narrative categories, where the global structure can be assessed at once. Meanwhile the online 
procedure may raise the salience of linear coherence relations, where such broader structure is 
less accessible. This would again be consistent with our findings here and elsewhere (Cohn et al., 
2012) that narrative structure is less consciously accessible than semantic structure. However, 
since recent work found little difference between online and offline tasks with regard to event 
segmentation (Mura et al., 2013), it is an open question whether this procedural difference may 
impact the recognition of narrative and semantic aspects of visual narratives.  

Related to this, a second difference is in the phrasing of the task. Previous works have 
phrased the segmentation task in terms of identifying changes in “events,” “activities,” or 
“situations” (Magliano et al., 2001; Magliano & Zacks, 2011; Zacks et al., 2009)—which may be 
based on semantic criteria (a “situation” being determined by the meaningful parts that occur 
within it). In contrast, the task here focused on the division of sequences of visible length into 
constituent parts—a task with no implicit semantics in the instructions. Whether these 
differences in procedure (online vs. online) or task (implicit semantics vs. sequencing alone) 
would push participants towards different segmentations would be interesting to investigate in 
future studies. 

4.1. Conclusion 
 This study investigated the influences on the segmentation of visual narrative sequences, 
and found that participants relied on cues from both narrative structure and coherence 
relationships. However, even though participants were more consciously aware of coherence 
shifts in their segmentations, these semantic relations were less influential than aspects of 
narrative structure. Thus, coherence shifts may be a “low-level” aspect of semantic 
comprehension that is tracked across sequences (Magliano & Zacks, 2011), which may align 
with the “higher level” structural aspects narrative grammar. Coherence shifts are thus not 
exclusively used as breaks between narrative constituent structures, but rather likely index 
prototypical correspondences between these processing streams. Altogether, these results further 
support claims that a narrative grammar and semantics mutually interface to provide the whole of 
visual narrative comprehension at multiple levels of structure.  
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